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Methods of constructing approximations for technical applications are outlined. 

Formulation of the Problem 

The function u(x, y, z, ...) is specified in the form of values ul, u2, ..., u n at 

a discrete set of points (xl, Yl, zz, ...), (x2, Y2, z2, ...), ..., (Xn' Yn' Zn .... ) with 

weights Wz, W2, ..., W n. It is required to construct a function f(x, y, z, ..., al, a2~ o~o, 

am) with the parameters al, a2, ..., am, approximating u(x, y, z, ...) with a mean-square 

error ~ satisfying the condition 

~----100 ~ /  ~ (u~--f(xh, Yk, zh . . . . .  a))2/(n - rn)~<~0. (1) 
h = l  

Here Oo i s  the  p e r m i s s i b l e  mean squa re  e r r o r ,  %; a i s  a v e c t o r  w i t h  the  components a~,  a2 ,  

�9 .o , a m. 

A list of problems from thermophysics and energetias leading to the constructing of an 
approximation for functions specified in tabular form may be assembled. It may be arbitrarily 
divided into two groups. 

The first group comprises problems associated with the development of tables and diagrams 
on the thermophysical properties of gases and liquids. This includes the construction of equa- 
tions of state and equations for transfer coefficients, the description of properties at phase- 
equilibrium lines, the analytical representation of ideal-gas functions obtained from spectro- 
scopic calculations, the approximation of virial coefficients, the properties of lines of 
extrema of thermodynamic quantities, potential curves, and many more. From the mathematical 
viewpoint, this class of problems reduces to the construction of approximations for functions 
specified in the form of a discrete set of values. 

The second group of problems arises directly in the design and optimization of physical 
power equipment. Such problems always presume the introduction into a computer of informa- 
tion on the properties of working bodies and heat carriers, the characteristics of construc- 
tional materials, data on the operating conditions of equipment, etc. Here information must 
be fed to the computer in a form permitting its selection in any structural part of the prob- 
lem with a minimum demand for machine time. This is due to the considerable fraction of 
computations required for the preparation and processing of the initial data for the optimi- 
zational part of the program. For example, in optimizing certain types of energy equipment, 
the machine time required solely for the calculation of the thermophysical properties of the 
working bodies and the heat carrier accounts for up to 80-90% of the total time for the solu- 
tion of the problem [i]. 

In connection with this, very wide use is made in practice of the analytical representa- 
tion of data using explicit approximations of the input variables. This approach makes 
economic use of the computer memory, reduces the machine time required, and significantly 
simplifies the algorithm for the calculation of the properties and other auxiliary data in 
the optimization process. However, outside the computer, the information which is to be input 
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is practically always specified in the form of tables or a set of experimental points. 
Therefore, the necessary approximations must be constructed preliminarily. 

General theoretical questions of the approximation of functions specified in tabular 
form have been studied sufficiently well; however, from a practical viewpoint, two points 
are significant here: I) the choice of approximating dependence; 2) the algorithm for 
finding the approximation coefficients. 

The approximations are usually taken in the form of polynomials, piecewise-rational 
expansions, and various combinations of elementary functions. The coefficients of the 
approximations are found from the condition of a minimum of the sum 

s = ~ ~lh (ul, - -  f (xh, ~k, z~, . .  a))~ 

(the least-squares method, or LSM). 

To find the minimizing vector a, two fundamentally different schemes may be used. 

I. Reduction to a System of Normal Equations 

(2 )  

8S/8a~ = O, i = 1, 2, . . . ,  in,  

~x a)) Of (x~, if:., z,~, a)/O,~, O. ~Yh ( u 1 ~ - - / t ~  J~, 9'I.., ~h~ . . . . . . . . .  = 
k - - 1  

(3) 

(4) 

In the general case, the nonlinear system in Eq. (4) is solved by a numerical method 
(Jacobi, Newton, etc.). Questions of the selection of initial approximation and questions 
of the convergence of the iterative processes are known to constitute the problem here. On 
the whole, the above classical scheme is widely used in practice and is sufficiently effec- 
tive in many cases, especially in the construction of approximations with linearly related 
parameters. 

2. Direct Minimization of the Sum in Eq. (2). This scheme has been rarely used to 
date in approximation problems. In essence, this is a particular case of the problem of 
mathematical programming (absence of constraints on the desired parameters). At present, 
this trend is being vigorously developed in connection with the urgency of the general 
problem of mathematical programming. Some tens of algorithms reflecting a particular search 
strategy for the vector a have been proposed. It should be said that no single universal 
algorithm which is equally effective in all cases of minimization exists as yet, and possibly 
it cannot exist. Note, however, that the whole set of methods here is divided into two 
groups: with and without the calculation of derivatives. 

Over many years, questions of the construction of effective approximation algorithms 
applicable to parameterization of different types have been investigated. The results for 
polynomials, rational fractions, a~d arbitrary combinations of elementary functions are given 
below. 

Po_~q~nomials 

Polynomial approximations are very popular with engineers and scientific workers, in 
view of their universality and expedience of programming, although in some cases other types 
of approximation are more effective. Three computational schemes are possible to find the 
coefficients of the polynomial approximations [2]. (For the sake of simplicity, polynomials 
of a single variable with positive powers will be considered. The results obtained below 
may also be extended to generalized polynomials of several variables.) 

Nonortho~onal Polynomials in the LSM Scheme (Algorithm No. i). In accordance with Eq. 
(4), a linear system of normal equations arises here; the specification of the system deter- 
iorates here with increase in power of the polynomial. In connection with this, the solu- 
tion of the system becomes steadily more sensitive to rounding errors and begins to depend 
strongly on the length of the pseudonumbers employed. Instability of "oscillating" type 
appears in the approximation, and the required accuracy of the approximation cannot be 
attained in this case. With increase in length of the mantissa of the number, the limit 
of instability is shifted toward increase in m, while the approximation itself improves 
(Table i). 
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TABLE i. Mean-Square Error of the Approximation of the 
Isobaric Specific Heat c~ of Nitrogen as a Function of 

P 
the Temperature, Using Various Approximation Algorithms 
and Computers 

t"n 

5 
6 

7 
8 
9 

t0 
|t 
12 
13 
14 
15 
16 
17 

A l g o r i t h m  R, ! ~ A l g o r i t h m  ~ 2 

0,228 0,228 9,228 
0,090 0,090 0,090 
0,054 0,054 D,054 
0,048 0,048 0,048 
0,052 0,024 0,024 
0,043 0,009 0,009 
0,037 0,009 0,009 
0,040 0,007 0,007 
0,044 0,003 0,003 
0,034 0,002 0,002 
0,028 0,002 0,002 
0,044 0,001 0,001 
0,033 0,001 O,OOt 

Algorithm ~r 3 

0,228 [0,228 0,228 
0,090 ]0,090 0,090 
0,054 [0,054 0,054 
0,048 ~0,048 0,048 
0,024 ~0,024 0,024 
0,009 ]0,009 0,009 
0,009 ]0,009 0,010 
0,008 ]0,007 0,010 
0,008 [0,003 0,136 t 
0,009 ~ 0,002 0,256 I 
0,006 [0,002 9,016 
0,006 [ 0,001 10,44 
0,006 I 0,00t 5042 

~s- ,o ,o  B~SM~ l IRis.so 

0,228 
0,090 
0,054 
O;O48 
0,031 
O,OL5 
0,020 
0,0t2 
0,043 
0,200 
0,615 
0,286 

0,228 t 0,228 0,090 0,090 
0,054 0,054 
0,048 0,048 
0,024 0,024 
0,009 0,009 
0,009 0>009 
0,007 0,007 
0,003 0,003 
0,002 0,002 
0,002 0,001 
0,002 0,001 
0,006 0,001 

Quasiorthogonal polynomials in an Orthogonal Scheme (Algorithm No. 2). In the case of 
a discrete set of arguments, particular orthogonal polynomials must be constructed in each 
specific case (for a continuous set, these are Legendre, Chebyshev, Hermite polynomials, etc.). 
With increase in power of the polynomial in any of the schemes developed to date, disruption 
of the orthogonality of the desired system of polynomials results. They will be called quasi- 
orthogonal. This disruption of orthogonality is reflected in the properties of the approxi- 
mation, the coefficients of which are found from the usual orthogonal scheme. Ultimately, at 
some m, there is a breakdown in the approximation of "avalanche" type. The required accuracy 
of the approximation may also be unachievable here. With increase in length of the mantissa 
of the numbers employed, the instability boundary shifts toward increase in m, while the de- 
gree of approximation is improved (Table i). 

Quasiorthogonal Polynomials in a LSM Scheme (Algorithm No. 3). An algorithm using 
quasiorthogonal polynomials in a LSM scheme has been proposed. In comparison with the two 
preceding algorithms, this one is of higher stability with respect to the rounding errors, 
and allows good approximations to be obtained on a computer, working with sufficiently 
"short" numbers. 

15 
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I0~ 5~ 

b tO 7 
45 

Fig. I. Relief of the function S = S(~, ~2) for linear (a) 
and nonlinear (b) variants of the LSM scheme in an approxi- 
mation by rational fractions. 
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TABLE 2. The Number of Calculations of the Target Function 
in Using Certain Minimization Methods. The Values of the 
Target Function at the End of Search Are Shown in Parentheses 

I - 
Type of target fund. Nelder--Mid method Rosenbrock Powell method Newton method 

[71 method [7] [9] [6] 

S=S(a l ,  ~2) 
(1]) 

S=S(a l ,  a2) 
(12) 

S=S(a l ,  a2) 
(13) 

S=S(a l  . . . . .  a4) 
(14) 

S=S(a , ,  ~2) 
(15) 

S=S(a , ,  . . . ,  as) 
(16) 

398 
(0,56. LO -17) 

170 
(0,26.10-3) 

264 
(0,18.10 -3) 

8OO 
(0,13.10 -3 ) 

196 
(0,94.10-3) 

623 
(0,35.10-3) 

1580 
(0,72.10 -aT) 

303 
(0,26.10-3) 

594 
(0,17-10 -3) 

3160 
(o,13.1o-3) 

235 
(0,95.10-2) 

18273 
(0,35.10-3) 

170 
(0,27.10 --26) 

37 
(0,22.10-2) 

405 
(0,17.10-3) 

456 
(0,13.10 -3) 

Diverges 

Diverges 

129 
(0,75.10 -28) 

18 
(0,22.10-a) 

195 
(0,18.10 -a) 

163 
(0,13.10 -a) 

72 
(0,94,10-3) 

9O 
(0,34.10 -3) 

Table 1 gives the results of approximating the isobaric specific heat of nitrogen in 
an ideal-gas state in the temperature range !0-2000~ In the approximation, polynomials 
in direct powers of the temperature are used. The calculations are performed with numbers 
of different length: ES-1040 (seven decimal places), BESM-4 (i0-ii decimal places), IRIS-80 
(14 decimal places), V-6700 (22 and ii decimal places). 

Rational Fractions 

With all their advantages, polynomials poorly transmit, and are sometimes not at all in 
a state to transmit, the behavior of functions with sharply expressed extrema [3]. In many 
cases, polynomials have poor extrapolational properties and do not satisfactorily describe 
derivatives at the boundaries of the approximate region. Rational fractions are found to be 
very effective here (for simplicity, the case of a single variable is considered): 

n 

+ X " / ) .  
i=0 /= i  

Two c o m p u t a t i o n a l  schemes may be used to  f i n d  the  c o e f f i c i e n t s  { a . }  and { b . ) .  
3 3 

L i n e a r  V a r i a n t  o f  t h e  LSM Scheme. The c o e f f i c i e n t s  o f  t he  e x p a n s i o n  i n  Eq. (5) a re  
d e t e r m i n e d  f rom the  c o n d i t i o n  o f  a minimum o f  t h e  sum 

N m 

S =  X W h ( y h ( 1  + ~ b , x ~ ) - - ~ a , x ~ )  2. (6)  

h=l i=t i=0 

I n  acco rdance  w i t h  Eq. ( 4 ) ,  a l i n e a r  sys tem o f  e q u a t i o n s  w h i c h  i s  s o l v e d  by a n n m e r i c a l  
method appears here. 

Nonlinear Variant of the LSM Scheme. The coefficients {a.} and {b.} are determined 
J J 

from the condition of a minimum of the sum 

N n 

k=l i=0 i=[ 

(7) 

Minimization of Eq. (7) according to the normal-equation scheme produces a complex and 
unstable algorithm; successful work with this algorithm depends on the closeness of the 
initial vector to the global-minimum point. In such cases, it is more expedient to use 
methods of direct minimization without calculating the derivatives (so-called logical-search 
methods). Note, however, that, in the case of a linear variant of the LSM scheme, it is 
possible to use methods of direct minimization. However, on account of the convexity of 
the relief, the sum in Eq. (6) corresponds to a more optimal algorithm than Eq. (7). 
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This may be explained for the example of the approximation of a tabulated function of 
a rational fraction of the form 

In Fig. la the relief of the sum of the type in Eq. (6) for the approximation in Eq. 
constructed for a set of ten points when l~x~10 is shown: 

10 
S = S (G(,1, o~2) ---~ ~ W k (Vk ( 1 -~ ot,,2/x 2) - -  (1 -t- oh/xn) )  2. 

(8) 

(9) 

The relief of a sum of the type in Eq. (7) for the same conditions as in Eq. (9) is shown 
in Fig. ib: 

I0 

S = S (a .  ~z~) = ~ PYh (Yh - -  ( I  + a~/xh)l(l -Jr- a~/x#,)) 2. (10)  
h=l 

It follows from Fig. 1 that~ in the first case, practically any method of direct mini- 
mization rapidly converges to the solution even if the initial vector e(o) is sufficiently 
far from the minimizing vector e*. For the sum in Eq. (i0), the relief is very complex 
(absence of convexity, presence of local minima, etc.). Successes in minimization depend 
here largely on the choice of the initial approximation and the method of search, determin- 
ing the search trajectory. 

Remember that, in the terminology of mathematical programming, the sum S = S(a) is 
called the target function. 

Arbitrary Combination of Elementary Functions 

An extensive range of algorithms based on the use of direct~minimization is investi- 
gated in this context. Special attention is paid here to the method of search without 
calculating the derivatives and to the question of choosing the initial approximation. The 
minimization procedure practically always consists of two stages. In the first, the initial 
approximation is chosen by the scanning method and, in the second, the iterative process 
determining the search strategy is undertaken. 

The methods of Danilin and Pshenichnyi [4, 5], of coordinate decline [6], of Hooke and 
Jeeves [7], Nelder~id [7], Rosenbrock [7, 8], and Powell [9], and the Newton linearization 
method have been investigated. Calculations were performed for functionals with different 
degree of complexity of the relief. The main aim of the investigations was to establish 
more effective algorithms, on the basis of which a packet of applied approximation programs 
intended for a wide range of uses may be developed. 

From the view-point of stability of the process of decline with respect to the relief, 
the Nelder~id method and the Rosenbrock method are the most suitable, while the Newton is 
the most rapid. The results of the investigation for some types of target functions are 
shown in Table 2; analytic expressions for these functions are given below: 

S = I00(a2-- al) 2 + (i -- ~)2, (ll) 

I0 

s = wh (yh- ( I/W + 2 (12) 
k=l 

i0 

S = ' ~  Wk (Yh - -  ( l / x~ '  - -  l /x~g) 2, ( 1 3 )  
h= 1 

I0 
S = ~_~ W h (yh - -  (O~l/X(~ ~ "Al'- 0~2/%~4)) 2, ( 1 4 )  

k : l  
10 

S = ~ Wk (Yh- (i + ~{xh)/(1 + a2/x~)) 2, (15) 

1346 



lO 

(16) 

On the basis of more effective methods, a packet of applied programs for Fortran has 
been developed, including approximation programs: generalized polynomials of a single 
variable (algorithm No. 3); rational fractions (a linear variant of the scheme); functions 
of arbitrary form using the Nelder--Mid method; functions of arbitrary form using the Rosen- 
brock method; functions of arbitrary form using the Newton method. In working with approxima- 
tion programs for functions of arbitrary form, users also employ the OB'EKT subprogram, in 
which the form of the approximating dependence and the means of input of the initial informa- 
tion are indicated. 
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